Transmission Electron Microscope (TEM)

The FEI Tecnai 12 Transmission Electron Microscope (TEM) enables both 2D and 3D imaging of specimen ultrastructure at up to 300,000x magnification. Images are acquired digitally using a bottom-mounted high resolution CMOS camera. A specialised specimen holder, together with SerialEM software, enables automated tilt series acquisition for 3D electron tomography.


  • Accelerating voltage: up to 120 kV
  • Lanthanum hexaboride (LaB6) electron source
  • Resolution: 0.49 nm (point)
  • Magnification: 20x to 300,000x
  • Single tilt specimen holder for standard imaging
  • Fischione 2040 dual axis tomography holder
  • Gatan Digital Micrograph 3.0 and SerialEM image acquisition platforms
  • 16 Megapixel Gatan OneView™ CMOS camera


  • Screening negatively stained particulate samples (eg: viruses, bacteria, protein and liposomes)
  • Characterisation of cellular ultrastructure (eg: mitochondria, centrosomes etc)
  • Subcellular localisation of proteins using immunogold labelling
  • Correlative light and electron microscopy (CLEM) to place fluorescent proteins/markers in ultrastructural context
  • Electron tomography for high resolution 3D reconstructions of organelles and particulate samples

Example images:

example EM image1 example EM image2 example EM image3 example EM image4 example EM image5

Recommended reading:

  • Carter, C.B. and Williams, D.B., 2009. Transmission electron microscopy. Springer-Verlag US.
  • Hayat, M.A., 1981. Principles and techniques of electron microscopy. Biological applications. Edward Arnold.
  • Bozzola, J.J. and Russell, L.D., 1999. Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning.
  • Pavelka, M. and Roth, J., 2015. Functional ultrastructure: atlas of tissue biology and pathology. Springer.
  • Harris, J.R., 1991. The negative staining-carbon film procedure: technical considerations and a survey of macromolecular applications. Micron and microscopica acta, 22(4), pp.341-359.
  • De Boer, P., Hoogenboom, J.P. and Giepmans, B.N., 2015. Correlated light and electron microscopy: ultrastructure lights up!. Nature methods, 12(6), pp.503-513.
  • McIntosh, R., Nicastro, D. and Mastronarde, D., 2005. New views of cells in 3D: an introduction to electron tomography. Trends in cell biology, 15(1), pp.43-51.

Selected recent publications from the Dunn School EM Facility (TEM):

  • Cottee, M.A., Muschalik, N., Johnson, S., Leveson, J., Raff, J.W. and Lea, S.M., 2015. The homo-oligomerisation of both Sas-6 and Ana2 is required for efficient centriole assembly in flies. Elife, 4, p.e07236.
  • Johnson, E., Seiradake, E., Jones, E.Y., Davis, I., Grünewald, K. and Kaufmann, R., 2015. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Scientific reports, 5.
  • Brady, J.P., Claridge, J.K., Smith, P.G. and Schnell, J.R., 2015. A conserved amphipathic helix is required for membrane tubule formation by Yop1p. Proceedings of the National Academy of Sciences, 112(7), pp.E639-E648.
  • Brune, K.D., Leneghan, D.B., Brian, I.J., Ishizuka, A.S., Bachmann, M.F., Draper, S.J., Biswas, S. and Howarth, M., 2016. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Scientific Reports, 6, p.19234.
  • Pratt, M.B., Titlow, J.S., Davis, I., Barker, A.R., Dawe, H.R., Raff, J.W. and Roque, H., 2016. Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults. J Cell Sci, 129(20), pp.3732-3743.
  • Serpell, C.J., Rutte, R.N., Geraki, K., Pach, E., Martincic, M., Kierkowicz, M., De Munari, S., Wals, K., Raj, R., Ballesteros, B. and Tobias, G., 2016. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nature Communications, 7.




electron microscopy

electron microscopy